
A Promising Semantics
for Relaxed-Memory

Concurrency by Kang et al

Nick Fitzgerald
Papers We Love PDX

October 26th, 2016
@pwlpdx

@fitzgen

• new memory model

• for relaxed memory

• and concurrency

• not my area of expertise

• any incorrectness is my own

• foundational -> important

• approachable

Memory model?

Formal semantics for loads and
stores

• formal semantics for reading from and writing to memory

• what order?

• what values?

• “relaxed” = normal loads and stores, no atomics/synchronization

• intuition for uniprocessor memory model:

• map from addresses to values

• read returns current value associated with address

• write immediately updates address’s associated value

Difficulties

• Multiprocessors

• multiprocessors and concurrency

• which operation happened first?

• can we even define an ordering on memory operations?

• SLIDE — Memory is actually hierarchical w/ multiple layers of caches

• some shared between all cores

• other layers distinct between cores

• SLIDE — We have those cache layers because memory is slow

• particularly writes b/c they invalidate other cores’ caches

• write buffers batch writes so that they don’t need to happen as often

• SLIDE — Optimizing compilers want to minimize + reorder loads and stores

• move them out of loops

• easy to reason about only one thread, but not so w/ concurrency

• Both Intel and AMD repeatedly published incorrect descriptions of their own semantics

• x86 TSO paper observed behavior Intel/AMD said was impossible

• and then went further and provided semantics that *did* accurately describe behavior

• but that Power and ARM have even weaker memory behavior, using TSO on them would require tons of expensive fences

• 2 notable programming language level memory models:

• 1. java: first language to provide a formal mem model

• both too weak to reason about and so strong it prevented many basic compiler optimizations

• and this is Guy Steele — what chance do us mere mortals have?

Difficulties

• Multiprocessors

• Caches

• multiprocessors and concurrency

• which operation happened first?

• can we even define an ordering on memory operations?

• SLIDE — Memory is actually hierarchical w/ multiple layers of caches

• some shared between all cores

• other layers distinct between cores

• SLIDE — We have those cache layers because memory is slow

• particularly writes b/c they invalidate other cores’ caches

• write buffers batch writes so that they don’t need to happen as often

• SLIDE — Optimizing compilers want to minimize + reorder loads and stores

• move them out of loops

• easy to reason about only one thread, but not so w/ concurrency

• Both Intel and AMD repeatedly published incorrect descriptions of their own semantics

• x86 TSO paper observed behavior Intel/AMD said was impossible

• and then went further and provided semantics that *did* accurately describe behavior

• but that Power and ARM have even weaker memory behavior, using TSO on them would require tons of expensive fences

• 2 notable programming language level memory models:

• 1. java: first language to provide a formal mem model

• both too weak to reason about and so strong it prevented many basic compiler optimizations

• and this is Guy Steele — what chance do us mere mortals have?

Difficulties

• Multiprocessors

• Caches

• Buffers

• multiprocessors and concurrency

• which operation happened first?

• can we even define an ordering on memory operations?

• SLIDE — Memory is actually hierarchical w/ multiple layers of caches

• some shared between all cores

• other layers distinct between cores

• SLIDE — We have those cache layers because memory is slow

• particularly writes b/c they invalidate other cores’ caches

• write buffers batch writes so that they don’t need to happen as often

• SLIDE — Optimizing compilers want to minimize + reorder loads and stores

• move them out of loops

• easy to reason about only one thread, but not so w/ concurrency

• Both Intel and AMD repeatedly published incorrect descriptions of their own semantics

• x86 TSO paper observed behavior Intel/AMD said was impossible

• and then went further and provided semantics that *did* accurately describe behavior

• but that Power and ARM have even weaker memory behavior, using TSO on them would require tons of expensive fences

• 2 notable programming language level memory models:

• 1. java: first language to provide a formal mem model

• both too weak to reason about and so strong it prevented many basic compiler optimizations

• and this is Guy Steele — what chance do us mere mortals have?

Difficulties

• Multiprocessors

• Caches

• Buffers

• Compiler optimizations

• multiprocessors and concurrency

• which operation happened first?

• can we even define an ordering on memory operations?

• SLIDE — Memory is actually hierarchical w/ multiple layers of caches

• some shared between all cores

• other layers distinct between cores

• SLIDE — We have those cache layers because memory is slow

• particularly writes b/c they invalidate other cores’ caches

• write buffers batch writes so that they don’t need to happen as often

• SLIDE — Optimizing compilers want to minimize + reorder loads and stores

• move them out of loops

• easy to reason about only one thread, but not so w/ concurrency

• Both Intel and AMD repeatedly published incorrect descriptions of their own semantics

• x86 TSO paper observed behavior Intel/AMD said was impossible

• and then went further and provided semantics that *did* accurately describe behavior

• but that Power and ARM have even weaker memory behavior, using TSO on them would require tons of expensive fences

• 2 notable programming language level memory models:

• 1. java: first language to provide a formal mem model

• both too weak to reason about and so strong it prevented many basic compiler optimizations

• and this is Guy Steele — what chance do us mere mortals have?

“Out of Thin Air” Reads

• The C++ memory model is fundamentally broken in usual way

• undefined behavior if not DRF

• out of thin air reads

• read a value that never had a corresponding previous write

• circular argument that if we read this value now

• it could then be written in the future

• and then travel back to the past and become its own grandfather

“Without a semantics, programmers
currently have to program against

their folklore understanding of what
the Java and C/C++ implementations
provide, and research on verification,

compilation, or testing for such
languages is on shaky foundations.”

–Batty et al in The Problem of Programming Language Concurrency
Semantics

• we have been writing concurrent programs

• in a glass house of cards

• built on foundation of sand

• where “writing concurrent programs” means “throwing rocks”

• and all the while we’re waiting for the Next Big Earthquake

• can’t avoid this by using higher level languages/paradigms

• guess what they’re implemented in?

Goals
• Describe actual hardware behavior

• often conflicting

• has to describe behavior of hardware that already exists

• ships have sailed

• if you don’t, then it won’t get used, period

• at the same time, can’t over specify and constrain future hardware design

• SLIDE — if too strong, compilers can’t reorder/elide

• SLIDE — if too weak, can’t reason about behavior/correctness programs

• easiest thing to reason about is SC, not practical

• SLIDE — absolutely need to avoid UB

• nondeterministic behavior ok

Goals
• Describe actual hardware behavior

• Weak enough to enable compiler
optimizations

• often conflicting

• has to describe behavior of hardware that already exists

• ships have sailed

• if you don’t, then it won’t get used, period

• at the same time, can’t over specify and constrain future hardware design

• SLIDE — if too strong, compilers can’t reorder/elide

• SLIDE — if too weak, can’t reason about behavior/correctness programs

• easiest thing to reason about is SC, not practical

• SLIDE — absolutely need to avoid UB

• nondeterministic behavior ok

Goals
• Describe actual hardware behavior

• Weak enough to enable compiler
optimizations

• Strong enough to reason on top of

• often conflicting

• has to describe behavior of hardware that already exists

• ships have sailed

• if you don’t, then it won’t get used, period

• at the same time, can’t over specify and constrain future hardware design

• SLIDE — if too strong, compilers can’t reorder/elide

• SLIDE — if too weak, can’t reason about behavior/correctness programs

• easiest thing to reason about is SC, not practical

• SLIDE — absolutely need to avoid UB

• nondeterministic behavior ok

Goals
• Describe actual hardware behavior

• Weak enough to enable compiler
optimizations

• Strong enough to reason on top of

• No undefined behavior!

• often conflicting

• has to describe behavior of hardware that already exists

• ships have sailed

• if you don’t, then it won’t get used, period

• at the same time, can’t over specify and constrain future hardware design

• SLIDE — if too strong, compilers can’t reorder/elide

• SLIDE — if too weak, can’t reason about behavior/correctness programs

• easiest thing to reason about is SC, not practical

• SLIDE — absolutely need to avoid UB

• nondeterministic behavior ok

The Promising Semantics
• (Mostly) backwards compatible with the

C++11 memory model

• backwards compat = maybe we can get C++ to adopt this model?

• SLIDE — no OOTA = sanity

• SLIDE — allowing some eliding + reordering permits normal nondeterminism of concurrency + compiler optimization

• SLIDE — if a program is single threaded, or uses atomics/locks properly, then it is completely unaffected

• SLIDE — no undefined behavior

• yes nondeterminism, but all permissible executions are well defined

The Promising Semantics
• (Mostly) backwards compatible with the

C++11 memory model

• Avoids out-of-thin-air

• backwards compat = maybe we can get C++ to adopt this model?

• SLIDE — no OOTA = sanity

• SLIDE — allowing some eliding + reordering permits normal nondeterminism of concurrency + compiler optimization

• SLIDE — if a program is single threaded, or uses atomics/locks properly, then it is completely unaffected

• SLIDE — no undefined behavior

• yes nondeterminism, but all permissible executions are well defined

The Promising Semantics
• (Mostly) backwards compatible with the

C++11 memory model

• Avoids out-of-thin-air

• Permits sane eliding and reordering

• backwards compat = maybe we can get C++ to adopt this model?

• SLIDE — no OOTA = sanity

• SLIDE — allowing some eliding + reordering permits normal nondeterminism of concurrency + compiler optimization

• SLIDE — if a program is single threaded, or uses atomics/locks properly, then it is completely unaffected

• SLIDE — no undefined behavior

• yes nondeterminism, but all permissible executions are well defined

The Promising Semantics
• (Mostly) backwards compatible with the

C++11 memory model

• Avoids out-of-thin-air

• Permits sane eliding and reordering

• Not infectious for data-race free programs

• backwards compat = maybe we can get C++ to adopt this model?

• SLIDE — no OOTA = sanity

• SLIDE — allowing some eliding + reordering permits normal nondeterminism of concurrency + compiler optimization

• SLIDE — if a program is single threaded, or uses atomics/locks properly, then it is completely unaffected

• SLIDE — no undefined behavior

• yes nondeterminism, but all permissible executions are well defined

The Promising Semantics
• (Mostly) backwards compatible with the

C++11 memory model

• Avoids out-of-thin-air

• Permits sane eliding and reordering

• Not infectious for data-race free programs

• No undefined behavior

• backwards compat = maybe we can get C++ to adopt this model?

• SLIDE — no OOTA = sanity

• SLIDE — allowing some eliding + reordering permits normal nondeterminism of concurrency + compiler optimization

• SLIDE — if a program is single threaded, or uses atomics/locks properly, then it is completely unaffected

• SLIDE — no undefined behavior

• yes nondeterminism, but all permissible executions are well defined

The Promising Semantics

Comprehensible!!

• what I liked most about this paper, and what made me love it, is how easy it is to understand

• especially in comparison to other memory semantics papers

• operational semantics vs happens-before partial ordering

Example (SB)

x := 1
a := y // 0

y := 1
b := x // 0

• first, let’s go through examples from the paper

• whether we want to permit it or not

• semantics will have to formally describe why it is permissible or not

• 2 threads, separated by ||

• SLIDE — all memory and all registers are initially 0

• SLIDE — a, b, c are registers

• SLIDE — x, y, z are all distinct memory locations

• x := 1 is writing to memory

• a := y is reading from memory

• SLIDE — // 0 means we observed 0 for a given read

• so how do we observe that both x and y are 0 here??

Example (SB)

x := 1
a := y // 0

y := 1
b := x // 0

• Everything is initially 0

• first, let’s go through examples from the paper

• whether we want to permit it or not

• semantics will have to formally describe why it is permissible or not

• 2 threads, separated by ||

• SLIDE — all memory and all registers are initially 0

• SLIDE — a, b, c are registers

• SLIDE — x, y, z are all distinct memory locations

• x := 1 is writing to memory

• a := y is reading from memory

• SLIDE — // 0 means we observed 0 for a given read

• so how do we observe that both x and y are 0 here??

Example (SB)

x := 1
a := y // 0

y := 1
b := x // 0

• Everything is initially 0
• a, b, c are registers

• first, let’s go through examples from the paper

• whether we want to permit it or not

• semantics will have to formally describe why it is permissible or not

• 2 threads, separated by ||

• SLIDE — all memory and all registers are initially 0

• SLIDE — a, b, c are registers

• SLIDE — x, y, z are all distinct memory locations

• x := 1 is writing to memory

• a := y is reading from memory

• SLIDE — // 0 means we observed 0 for a given read

• so how do we observe that both x and y are 0 here??

Example (SB)

x := 1
a := y // 0

y := 1
b := x // 0

• Everything is initially 0
• a, b, c are registers
• x, y, z are distinct memory locations

• first, let’s go through examples from the paper

• whether we want to permit it or not

• semantics will have to formally describe why it is permissible or not

• 2 threads, separated by ||

• SLIDE — all memory and all registers are initially 0

• SLIDE — a, b, c are registers

• SLIDE — x, y, z are all distinct memory locations

• x := 1 is writing to memory

• a := y is reading from memory

• SLIDE — // 0 means we observed 0 for a given read

• so how do we observe that both x and y are 0 here??

Example (SB)

x := 1
a := y // 0

y := 1
b := x // 0

• Everything is initially 0
• a, b, c are registers
• x, y, z are distinct memory locations
• // 0 means that we observed the value 0

• first, let’s go through examples from the paper

• whether we want to permit it or not

• semantics will have to formally describe why it is permissible or not

• 2 threads, separated by ||

• SLIDE — all memory and all registers are initially 0

• SLIDE — a, b, c are registers

• SLIDE — x, y, z are all distinct memory locations

• x := 1 is writing to memory

• a := y is reading from memory

• SLIDE — // 0 means we observed 0 for a given read

• so how do we observe that both x and y are 0 here??

Example (SB)

a := y // 0
x := 1

b := x // 0
y := 1

Store buffering!

• no syntactic dependency between `x := 1` and `a := y`

• therefore, safe to buffer the write to happen later

• reorders each threads read and write operations so they execute like the above

• both threads do their reads

• and then their writes

• want to support

• x86 does

Example (LB)

a := x // 1
y := 1

x := y

• should we permit the first thread to observe 1 for its read of x?

• yes

Example (LB)

y := 1
a := x // 1

x := y

Load buffering!
Power

ARM

* no dependency between first thread’s write to y and read of x

* load buffering allows delaying the read so that the write to y happens first

* to observe a read where x is 1:

* first thread writes y=1

* second thread reads y=1 and writes x=y=1

* first thread reads x=1

* crazy as this behavior may seem, both Power and ARM do this!

Example (LBd)

a := x // 1?
y := a

x := y

* instead of writing y = 1, writing y = a

* Permit first thread to observe x = 1?

* nope!

Example (LBd)

a := x // 1
y := a

x := y

Nope!
* first, syntactic dependency between first thread’s read and write

* can’t reorder them

* second, where did 1 come from?

* out of thin air!

* this is actually permitted by the C++11 memory model

* but we should hold ourselves to higher standards!

Example (LBfd)

a := x // 1?
y := a + 1 - a

x := y

* Same thing but replace `y := a` with `y := a + 1 - a`

* Now should we permit observing 1 when reading x?

* yes!

Example (LBfd)

a := x // 1?
y := 1

x := y

Compiler
optimizations!

* We should permit an optimizing compiler to reduce `a + 1 - a` to `1`

Example (LBfd)

y := 1
a := x // 1?

x := y

Compiler
optimizations!

Load buffering!

* and once we’ve done that, there is no more syntactic dependency between the read and write

* we can do the same load buffering induced reordering as example (LB)

Example (LBfd)

y := 1
a := x // 1!

x := y

Compiler
optimizations!

Load buffering!

Yes!
* To observe x=1:

* first thread writes y=1

* second thread reads y=1, then writes x=y=1

* first thread reads x=1

What is memory?

• traditionally think of map from address to value

• not conducive to formalization

• SLIDE — set of all writes ever occurred in program

• location: x or y or z

• value: 1 or whatever

• time?

• rational number

• any number representable by p / q where p,q are integers

• infinite number of rationals

• and infinite number of rationals between two distinct rationals == “dense”

• more on this later…

• SLIDE

• `x := 1` translates to 〈 x : 1 @ t 〉

• initially contains zero messages for all memory at timestamp 0

〈 location : value @ time 〉

What is memory?

• traditionally think of map from address to value

• not conducive to formalization

• SLIDE — set of all writes ever occurred in program

• location: x or y or z

• value: 1 or whatever

• time?

• rational number

• any number representable by p / q where p,q are integers

• infinite number of rationals

• and infinite number of rationals between two distinct rationals == “dense”

• more on this later…

• SLIDE

• `x := 1` translates to 〈 x : 1 @ t 〉

• initially contains zero messages for all memory at timestamp 0

〈 location : value @ time 〉

What is memory?

x := 1 〈 x : 1 @ t 〉

• traditionally think of map from address to value

• not conducive to formalization

• SLIDE — set of all writes ever occurred in program

• location: x or y or z

• value: 1 or whatever

• time?

• rational number

• any number representable by p / q where p,q are integers

• infinite number of rationals

• and infinite number of rationals between two distinct rationals == “dense”

• more on this later…

• SLIDE

• `x := 1` translates to 〈 x : 1 @ t 〉

• initially contains zero messages for all memory at timestamp 0

• Each thread has a local 
address ⇒ timestamp map

• It is updated by reads and
writes

• Thread local maps from memory locations => largest timestamp observed for location

• map updated by thread’s reads/writes

• reads must be satisfied by a write message w/ timestamp >= thread’s view of address

• writes allocate new timestamp > thread’s view of address, add write message to global memory set

write(T, x, v):
 let t = new unique timestamp > T.view[x]
 T.view[x] = t
 insert 〈 x : v @ t 〉 into the memory set

• not going to go into the operational semantics, use pseudocode instead

• T = thread

• x = memory location

• v = value being written

• T.view is thread-local map

• T.view[x] is thread’s most recent view of memory location x

write(T, x, v):
 let t = new unique timestamp > T.view[x]
 T.view[x] = t
 insert 〈 x : v @ t 〉 into the memory set

write(T, x, v):
 let t = new unique timestamp > T.view[x]
 T.view[x] = t
 insert 〈 x : v @ t 〉 into the memory set

write(T, x, v):
 let t = new unique timestamp > T.view[x]
 T.view[x] = t
 insert 〈 x : v @ t 〉 into the memory set

• use of timestamps provides “coherence”

• total order on writes to particular location

read(T, x):
 let t = T.view[x]
 let possibles = empty set
 for each 〈 x' : v @ t' 〉 in memory:
 if x' == x and t' >= t:
 insert 〈 x' : v @ t' 〉 into possibles
 let 〈 _ : v @ t' 〉 =
 nondeterministically choose one from possibles
 T.view[x] = t'
 return v

• again:

• T = thread

• x = memory location

• T.view is thread-local map

read(T, x):
 let t = T.view[x]
 let possibles = empty set
 for each 〈 x' : v @ t' 〉 in memory:
 if x' == x and t' >= t:
 insert 〈 x' : v @ t' 〉 into possibles
 let 〈 _ : v @ t' 〉 =
 nondeterministically choose one from possibles
 T.view[x] = t'
 return v

• get timestamp of current thread’s view of x

read(T, x):
 let t = T.view[x]
 let possibles = empty set
 for each 〈 x' : v @ t' 〉 in memory:
 if x' == x and t' >= t:
 insert 〈 x' : v @ t' 〉 into possibles
 let 〈 _ : v @ t' 〉 =
 nondeterministically choose one from possibles
 T.view[x] = t'
 return v

• write messages that can satisfy this read must have time >= that timestamp

• this is NOT the “latest” write to x

• b/c there is no shared understanding between thread of “latest” write

read(T, x):
 let t = T.view[x]
 let possibles = empty set
 for each 〈 x' : v @ t' 〉 in memory:
 if x' == x and t' >= t:
 insert 〈 x' : v @ t' 〉 into possibles
 let 〈 _ : v @ t' 〉 =
 nondeterministically choose one from possibles
 T.view[x] = t'
 return v

• have a set of writes that could possibly satisfy this read

• choose one nondeterministically

read(T, x):
 let t = T.view[x]
 let possibles = empty set
 for each 〈 x' : v @ t' 〉 in memory:
 if x' == x and t' >= t:
 insert 〈 x' : v @ t' 〉 into possibles
 let 〈 _ : v @ t' 〉 =
 nondeterministically choose one from possibles
 T.view[x] = t'
 return v

• update thread’s view to account for observing this new write message

• return the write message’s value to satisfy read

Example (SB)
x := 1
a := y

y := 1
b := x

Memory T0.view T1.view
〈 x : 0 @ 0 〉
〈 y : 0 @ 0 〉 x @ 0

y @ 0
x @ 0
y @ 0

• revisit store buffering example

• the paper moves fast, lets move slow

• like a stepping debugger

• arrow is program counter

• points to the next instruction to execute

• list of all messages in memory set

• show each thread’s view of memory

Example (SB)
x := 1
a := y

y := 1
b := x

Memory T0.view T1.view
〈 x : 0 @ 0 〉
〈 y : 0 @ 0 〉 x @ 0

y @ 0
x @ 0
y @ 0

• remember:

• observed 0 in load of `y` into `a`

• observed 0 in load of `x` into `b`

• we want our semantics to permit this

• without loss of generality

• let’s say first thread does its write first

• SLIDE — we get new write message in memory

• SLIDE — first thread’s view is updated

• SLIDE — advance first thread’s program counter

• then the second thread does its write

• SLIDE — we get a new write message in memory

• SLIDE — second thread’s view is updated

• SLIDE — advance second thread’s pc

• now either read can happen next

• first thread’s read of `y`

• its view of `y` still at timestamp 0

• can select either write message to satisfy read

• choose @0 message to see our desired election

• second thread is similar

Example (SB)
x := 1
a := y

y := 1
b := x

Memory T0.view T1.view
〈 x : 0 @ 0 〉
〈 y : 0 @ 0 〉 x @ 0

y @ 0
x @ 0
y @ 0〈 x : 1 @ 1 〉

• remember:

• observed 0 in load of `y` into `a`

• observed 0 in load of `x` into `b`

• we want our semantics to permit this

• without loss of generality

• let’s say first thread does its write first

• SLIDE — we get new write message in memory

• SLIDE — first thread’s view is updated

• SLIDE — advance first thread’s program counter

• then the second thread does its write

• SLIDE — we get a new write message in memory

• SLIDE — second thread’s view is updated

• SLIDE — advance second thread’s pc

• now either read can happen next

• first thread’s read of `y`

• its view of `y` still at timestamp 0

• can select either write message to satisfy read

• choose @0 message to see our desired election

• second thread is similar

Example (SB)
x := 1
a := y

y := 1
b := x

Memory T0.view T1.view
〈 x : 0 @ 0 〉
〈 y : 0 @ 0 〉 x @ 0

y @ 0
x @ 0
y @ 0〈 x : 1 @ 1 〉

1

• remember:

• observed 0 in load of `y` into `a`

• observed 0 in load of `x` into `b`

• we want our semantics to permit this

• without loss of generality

• let’s say first thread does its write first

• SLIDE — we get new write message in memory

• SLIDE — first thread’s view is updated

• SLIDE — advance first thread’s program counter

• then the second thread does its write

• SLIDE — we get a new write message in memory

• SLIDE — second thread’s view is updated

• SLIDE — advance second thread’s pc

• now either read can happen next

• first thread’s read of `y`

• its view of `y` still at timestamp 0

• can select either write message to satisfy read

• choose @0 message to see our desired election

• second thread is similar

Example (SB)
x := 1
a := y

y := 1
b := x

Memory T0.view T1.view
〈 x : 0 @ 0 〉
〈 y : 0 @ 0 〉 x @ 0

y @ 0
x @ 0
y @ 0〈 x : 1 @ 1 〉

1

• remember:

• observed 0 in load of `y` into `a`

• observed 0 in load of `x` into `b`

• we want our semantics to permit this

• without loss of generality

• let’s say first thread does its write first

• SLIDE — we get new write message in memory

• SLIDE — first thread’s view is updated

• SLIDE — advance first thread’s program counter

• then the second thread does its write

• SLIDE — we get a new write message in memory

• SLIDE — second thread’s view is updated

• SLIDE — advance second thread’s pc

• now either read can happen next

• first thread’s read of `y`

• its view of `y` still at timestamp 0

• can select either write message to satisfy read

• choose @0 message to see our desired election

• second thread is similar

Example (SB)
x := 1
a := y

y := 1
b := x

Memory T0.view T1.view
〈 x : 0 @ 0 〉
〈 y : 0 @ 0 〉 x @ 0

y @ 0
x @ 0
y @ 0〈 x : 1 @ 1 〉

1

〈 y : 1 @ 1 〉

• remember:

• observed 0 in load of `y` into `a`

• observed 0 in load of `x` into `b`

• we want our semantics to permit this

• without loss of generality

• let’s say first thread does its write first

• SLIDE — we get new write message in memory

• SLIDE — first thread’s view is updated

• SLIDE — advance first thread’s program counter

• then the second thread does its write

• SLIDE — we get a new write message in memory

• SLIDE — second thread’s view is updated

• SLIDE — advance second thread’s pc

• now either read can happen next

• first thread’s read of `y`

• its view of `y` still at timestamp 0

• can select either write message to satisfy read

• choose @0 message to see our desired election

• second thread is similar

Example (SB)
x := 1
a := y

y := 1
b := x

Memory T0.view T1.view
〈 x : 0 @ 0 〉
〈 y : 0 @ 0 〉 x @ 0

y @ 0
x @ 0
y @ 0〈 x : 1 @ 1 〉

1

〈 y : 1 @ 1 〉
1

• remember:

• observed 0 in load of `y` into `a`

• observed 0 in load of `x` into `b`

• we want our semantics to permit this

• without loss of generality

• let’s say first thread does its write first

• SLIDE — we get new write message in memory

• SLIDE — first thread’s view is updated

• SLIDE — advance first thread’s program counter

• then the second thread does its write

• SLIDE — we get a new write message in memory

• SLIDE — second thread’s view is updated

• SLIDE — advance second thread’s pc

• now either read can happen next

• first thread’s read of `y`

• its view of `y` still at timestamp 0

• can select either write message to satisfy read

• choose @0 message to see our desired election

• second thread is similar

Example (SB)
x := 1
a := y

y := 1
b := x

Memory T0.view T1.view
〈 x : 0 @ 0 〉
〈 y : 0 @ 0 〉 x @ 0

y @ 0
x @ 0
y @ 0〈 x : 1 @ 1 〉

1

〈 y : 1 @ 1 〉
1

• remember:

• observed 0 in load of `y` into `a`

• observed 0 in load of `x` into `b`

• we want our semantics to permit this

• without loss of generality

• let’s say first thread does its write first

• SLIDE — we get new write message in memory

• SLIDE — first thread’s view is updated

• SLIDE — advance first thread’s program counter

• then the second thread does its write

• SLIDE — we get a new write message in memory

• SLIDE — second thread’s view is updated

• SLIDE — advance second thread’s pc

• now either read can happen next

• first thread’s read of `y`

• its view of `y` still at timestamp 0

• can select either write message to satisfy read

• choose @0 message to see our desired election

• second thread is similar

Example (LB)
a := x
y := 1

x := y

Memory T0.view T1.view
〈 x : 0 @ 0 〉
〈 y : 0 @ 0 〉 x @ 0

y @ 0
x @ 0
y @ 0

• revisit load buffering example

• want to observe `1` when loading `x`

• b/c this is actual behavior of power & arm

• What if we do the read of `x` first?

• only message that can satisfy read has value 0

• won’t work

• What if we do the second thread’s read+write first?

• SLIDE — add new write message to memory & update second thread’s view

• SLIDE — advance pc

• now two messages can satisfy first thread’s read

• but both are `value = 0`

• SLIDE — our semantics can’t describe this yet, need to extend them

Example (LB)
a := x
y := 1

x := y

Memory T0.view T1.view
〈 x : 0 @ 0 〉
〈 y : 0 @ 0 〉 x @ 0

y @ 0
x @ 0
y @ 0〈 x : 0 @ 1 〉

1

• revisit load buffering example

• want to observe `1` when loading `x`

• b/c this is actual behavior of power & arm

• What if we do the read of `x` first?

• only message that can satisfy read has value 0

• won’t work

• What if we do the second thread’s read+write first?

• SLIDE — add new write message to memory & update second thread’s view

• SLIDE — advance pc

• now two messages can satisfy first thread’s read

• but both are `value = 0`

• SLIDE — our semantics can’t describe this yet, need to extend them

Example (LB)
a := x
y := 1

x := y

Memory T0.view T1.view
〈 x : 0 @ 0 〉
〈 y : 0 @ 0 〉 x @ 0

y @ 0
x @ 0
y @ 0〈 x : 0 @ 1 〉

1

• revisit load buffering example

• want to observe `1` when loading `x`

• b/c this is actual behavior of power & arm

• What if we do the read of `x` first?

• only message that can satisfy read has value 0

• won’t work

• What if we do the second thread’s read+write first?

• SLIDE — add new write message to memory & update second thread’s view

• SLIDE — advance pc

• now two messages can satisfy first thread’s read

• but both are `value = 0`

• SLIDE — our semantics can’t describe this yet, need to extend them

Example (LB)
a := x
y := 1

x := y

Memory T0.view T1.view
〈 x : 0 @ 0 〉
〈 y : 0 @ 0 〉 x @ 0

y @ 0
x @ 0
y @ 0〈 x : 0 @ 1 〉

1

• revisit load buffering example

• want to observe `1` when loading `x`

• b/c this is actual behavior of power & arm

• What if we do the read of `x` first?

• only message that can satisfy read has value 0

• won’t work

• What if we do the second thread’s read+write first?

• SLIDE — add new write message to memory & update second thread’s view

• SLIDE — advance pc

• now two messages can satisfy first thread’s read

• but both are `value = 0`

• SLIDE — our semantics can’t describe this yet, need to extend them

Introducing Promises

• JavaScript developers had the silver bullet all along! Promises!

• SLIDE — just kidding, not those promises

Introducing Promises

😜
• JavaScript developers had the silver bullet all along! Promises!

• SLIDE — just kidding, not those promises

• A thread can promise to write a value in the future

• thread can promise to write a value in future

• must guarantee that it will fulfill promise

• potential infinite loop / early exit / conditional / etc between now and promised write is NOT valid

• after every step, re-verify it can still fulfill promised write

• SLIDE — promise equivalent to normal write form other threads’ POV

• adds write message to memory set

• they can observe promised write in reads

• SLIDE — promising thread cannot use its promised write in reads!

• single threaded program

• we don’t want to promise write `x := 1`

• and then read that promised write in `a := x`

• don’t need to add special rules for this, existing timestamps are enough

• if promised write was observed

• it would update `T.view[x] = timestamp(promise)`

• which would make fulfilling the write impossible, as write’s timestamp must be > than view

• however, *can* indirectly observe promised write via other threads’ reads+writes

• A thread can promise to write a value in the future

• Other threads can satisfy reads with that promise

• thread can promise to write a value in future

• must guarantee that it will fulfill promise

• potential infinite loop / early exit / conditional / etc between now and promised write is NOT valid

• after every step, re-verify it can still fulfill promised write

• SLIDE — promise equivalent to normal write form other threads’ POV

• adds write message to memory set

• they can observe promised write in reads

• SLIDE — promising thread cannot use its promised write in reads!

• single threaded program

• we don’t want to promise write `x := 1`

• and then read that promised write in `a := x`

• don’t need to add special rules for this, existing timestamps are enough

• if promised write was observed

• it would update `T.view[x] = timestamp(promise)`

• which would make fulfilling the write impossible, as write’s timestamp must be > than view

• however, *can* indirectly observe promised write via other threads’ reads+writes

• A thread can promise to write a value in the future

• Other threads can satisfy reads with that promise

• Promising thread cannot!  
 
 a := x // 1? No!!!  
 x := 1

• thread can promise to write a value in future

• must guarantee that it will fulfill promise

• potential infinite loop / early exit / conditional / etc between now and promised write is NOT valid

• after every step, re-verify it can still fulfill promised write

• SLIDE — promise equivalent to normal write form other threads’ POV

• adds write message to memory set

• they can observe promised write in reads

• SLIDE — promising thread cannot use its promised write in reads!

• single threaded program

• we don’t want to promise write `x := 1`

• and then read that promised write in `a := x`

• don’t need to add special rules for this, existing timestamps are enough

• if promised write was observed

• it would update `T.view[x] = timestamp(promise)`

• which would make fulfilling the write impossible, as write’s timestamp must be > than view

• however, *can* indirectly observe promised write via other threads’ reads+writes

promise(T, x, v, t):
 insert 〈 x : v @ t 〉 into memory
 insert 〈 x : v @ t 〉 into T.prm

• Again with the pseudocode

• T = thread making the promise

• x = memory location

• v = value

• t = timestamp

promise(T, x, v, t):
 insert 〈 x : v @ t 〉 into memory
 insert 〈 x : v @ t 〉 into T.prm

• just like a “normal” write, message is put into memory

promise(T, x, v, t):
 insert 〈 x : v @ t 〉 into memory
 insert 〈 x : v @ t 〉 into T.prm

• also added to thread’s local set of unfulfilled promises, T.prm

• T.prm lets us know what we can or can’t fulfill

• must be empty at the end of thread’s execution

• if it isn’t that means we didn’t fulfill all promises

fulfill(T, x, v, t):
 remove 〈 x : v @ t 〉 from T.prm
 T.view[x] = t

• write kind of already happened — fulfill brings thread up to date with its promised write

• removes promised write from unfulfilled promise set

• updates local view of memory location x

write(T, x, v):
 let t = new unique timestamp > T.view[x]
 promise(T, x, v, t)
 fulfill(T, x, v, t)

• write is no longer “special”

• just a promise + fulfill back-to-back

read(T, x):
 let min_t = T.view[x]

 let max_t = infinity
 for each 〈 x' : v @ t 〉 in T.prm:
 if x' == x:
 max_t = minimum(max_t, t)

 let possibles = empty set
 for each 〈 x' : v @ t 〉 in memory:
 if x' == x and min_t <= t and t < max_t:
 insert 〈 x' : v @ t 〉 into possibles

let 〈 _ : v @ t 〉 =
 nondeterministically choose one from possibles
 T.view[x] = t
 return v

• read needs to be revised a bit to play nice with promises

• as before, building up the set of write messages that *could* *possibly* satisfy this read

• but now we have some extra checks

• this pseudocode is *descriptive* only

• the new checks don’t appear in the formal operational semantics

read(T, x):
 let min_t = T.view[x]

 let max_t = infinity
 for each 〈 x' : v @ t 〉 in T.prm:
 if x' == x:
 max_t = minimum(max_t, t)

 let possibles = empty set
 for each 〈 x' : v @ t 〉 in memory:
 if x' == x and min_t <= t and t < max_t:
 insert 〈 x' : v @ t 〉 into possibles

let 〈 _ : v @ t 〉 =
 nondeterministically choose one from possibles
 T.view[x] = t
 return v

• minimum timestamp a write message can have to satisfy our read

• this is all we had before

read(T, x):
 let min_t = T.view[x]

 let max_t = infinity
 for each 〈 x' : v @ t 〉 in T.prm:
 if x' == x:
 max_t = minimum(max_t, t)

 let possibles = empty set
 for each 〈 x' : v @ t 〉 in memory:
 if x' == x and min_t <= t and t < max_t:
 insert 〈 x' : v @ t 〉 into possibles

let 〈 _ : v @ t 〉 =
 nondeterministically choose one from possibles
 T.view[x] = t
 return v

• unlike before, now defining upper bound on messages’ timestamps

• timestamp of message that satisfies read must be less than minimum promised timestamp

• otherwise promise would be unfulfillable — like single threaded example earlier

• implicitly disallowed in operational semantics

• failure to obey would make promises unfulfillable

read(T, x):
 let min_t = T.view[x]

 let max_t = infinity
 for each 〈 x' : v @ t 〉 in T.prm:
 if x' == x:
 max_t = minimum(max_t, t)

 let possibles = empty set
 for each 〈 x' : v @ t 〉 in memory:
 if x' == x and min_t <= t and t < max_t:
 insert 〈 x' : v @ t 〉 into possibles

let 〈 _ : v @ t 〉 =
 nondeterministically choose one from possibles
 T.view[x] = t
 return v

• have min and max bounds, so get every write message that falls within them

• this is set of write messages that could possibly fulfill this read

read(T, x):
 let min_t = T.view[x]

 let max_t = infinity
 for each 〈 x' : v @ t 〉 in T.prm:
 if x' == x:
 max_t = minimum(max_t, t)

 let possibles = empty set
 for each 〈 x' : v @ t 〉 in memory:
 if x' == x and min_t <= t and t < max_t:
 insert 〈 x' : v @ t 〉 into possibles
 
 let 〈 _ : v @ t 〉 =
 nondeterministically choose one from possibles
 T.view[x] = t
 return v

• from here, proceeds as we originally did

• nondeterministically choose one message from our possibilities

• update thread’s local view of memory location x

• return the value

Example (LB)
a := x
y := 1

x := y

Memory T0.view T1.view
〈 x : 0 @ 0 〉
〈 y : 0 @ 0 〉 x @ 0

y @ 0
x @ 0
y @ 0

T0.prm T1.prm

• revisit load buffering example

• remember: want to permit observing `1` when loading memory location `x` into register `a`

• SLIDE — first thread promises to write `y := 1` at timestamp 1

• this also adds the promised write to memory

• but does NOT advance pc!

• SLIDE — second thread reads y

• possibilities include y @ 0 and y @ 1

• choose the latter in this execution

• its view of y is updated

• SLIDE — writes the newly read value back to x with timestamp 1

• technically this involves promise+fulfill

• and second thread’s view of x is also updated

• SLIDE — and it’s pc advances and second thread is finished

• SLIDE — first thread reads x

• two possibilities: @0 and @1

• we choose @1 to observe `x = 1`

• update local view of `x`

• SLIDE

• not done yet — still have to fulfill promised write

• local view of `y` is @ 0

Example (LB)
a := x
y := 1

x := y

Memory T0.view T1.view
〈 x : 0 @ 0 〉
〈 y : 0 @ 0 〉 x @ 0

y @ 0
x @ 0
y @ 0

T0.prm T1.prm
〈 y : 1 @ 1 〉

〈 y : 1 @ 1 〉

• revisit load buffering example

• remember: want to permit observing `1` when loading memory location `x` into register `a`

• SLIDE — first thread promises to write `y := 1` at timestamp 1

• this also adds the promised write to memory

• but does NOT advance pc!

• SLIDE — second thread reads y

• possibilities include y @ 0 and y @ 1

• choose the latter in this execution

• its view of y is updated

• SLIDE — writes the newly read value back to x with timestamp 1

• technically this involves promise+fulfill

• and second thread’s view of x is also updated

• SLIDE — and it’s pc advances and second thread is finished

• SLIDE — first thread reads x

• two possibilities: @0 and @1

• we choose @1 to observe `x = 1`

• update local view of `x`

• SLIDE

• not done yet — still have to fulfill promised write

• local view of `y` is @ 0

Example (LB)
a := x
y := 1

x := y

Memory T0.view T1.view
〈 x : 0 @ 0 〉
〈 y : 0 @ 0 〉 x @ 0

y @ 0
x @ 0
y @ 0

T0.prm T1.prm
〈 y : 1 @ 1 〉

〈 y : 1 @ 1 〉 1

• revisit load buffering example

• remember: want to permit observing `1` when loading memory location `x` into register `a`

• SLIDE — first thread promises to write `y := 1` at timestamp 1

• this also adds the promised write to memory

• but does NOT advance pc!

• SLIDE — second thread reads y

• possibilities include y @ 0 and y @ 1

• choose the latter in this execution

• its view of y is updated

• SLIDE — writes the newly read value back to x with timestamp 1

• technically this involves promise+fulfill

• and second thread’s view of x is also updated

• SLIDE — and it’s pc advances and second thread is finished

• SLIDE — first thread reads x

• two possibilities: @0 and @1

• we choose @1 to observe `x = 1`

• update local view of `x`

• SLIDE

• not done yet — still have to fulfill promised write

• local view of `y` is @ 0

Example (LB)
a := x
y := 1

x := y

Memory T0.view T1.view
〈 x : 0 @ 0 〉
〈 y : 0 @ 0 〉 x @ 0

y @ 0
x @ 0
y @ 0

T0.prm T1.prm
〈 y : 1 @ 1 〉

〈 y : 1 @ 1 〉 1
〈 x : 1 @ 1 〉

1

• revisit load buffering example

• remember: want to permit observing `1` when loading memory location `x` into register `a`

• SLIDE — first thread promises to write `y := 1` at timestamp 1

• this also adds the promised write to memory

• but does NOT advance pc!

• SLIDE — second thread reads y

• possibilities include y @ 0 and y @ 1

• choose the latter in this execution

• its view of y is updated

• SLIDE — writes the newly read value back to x with timestamp 1

• technically this involves promise+fulfill

• and second thread’s view of x is also updated

• SLIDE — and it’s pc advances and second thread is finished

• SLIDE — first thread reads x

• two possibilities: @0 and @1

• we choose @1 to observe `x = 1`

• update local view of `x`

• SLIDE

• not done yet — still have to fulfill promised write

• local view of `y` is @ 0

Example (LB)
a := x
y := 1

x := y

Memory T0.view T1.view
〈 x : 0 @ 0 〉
〈 y : 0 @ 0 〉 x @ 0

y @ 0
x @ 0
y @ 0

T0.prm T1.prm
〈 y : 1 @ 1 〉

〈 y : 1 @ 1 〉 1
〈 x : 1 @ 1 〉

1

• revisit load buffering example

• remember: want to permit observing `1` when loading memory location `x` into register `a`

• SLIDE — first thread promises to write `y := 1` at timestamp 1

• this also adds the promised write to memory

• but does NOT advance pc!

• SLIDE — second thread reads y

• possibilities include y @ 0 and y @ 1

• choose the latter in this execution

• its view of y is updated

• SLIDE — writes the newly read value back to x with timestamp 1

• technically this involves promise+fulfill

• and second thread’s view of x is also updated

• SLIDE — and it’s pc advances and second thread is finished

• SLIDE — first thread reads x

• two possibilities: @0 and @1

• we choose @1 to observe `x = 1`

• update local view of `x`

• SLIDE

• not done yet — still have to fulfill promised write

• local view of `y` is @ 0

Example (LB)
a := x
y := 1

x := y

Memory T0.view T1.view
〈 x : 0 @ 0 〉
〈 y : 0 @ 0 〉 x @ 0

y @ 0
x @ 0
y @ 0

T0.prm T1.prm
〈 y : 1 @ 1 〉

〈 y : 1 @ 1 〉 1
〈 x : 1 @ 1 〉

11

• revisit load buffering example

• remember: want to permit observing `1` when loading memory location `x` into register `a`

• SLIDE — first thread promises to write `y := 1` at timestamp 1

• this also adds the promised write to memory

• but does NOT advance pc!

• SLIDE — second thread reads y

• possibilities include y @ 0 and y @ 1

• choose the latter in this execution

• its view of y is updated

• SLIDE — writes the newly read value back to x with timestamp 1

• technically this involves promise+fulfill

• and second thread’s view of x is also updated

• SLIDE — and it’s pc advances and second thread is finished

• SLIDE — first thread reads x

• two possibilities: @0 and @1

• we choose @1 to observe `x = 1`

• update local view of `x`

• SLIDE

• not done yet — still have to fulfill promised write

• local view of `y` is @ 0

Example (LB)
a := x
y := 1

x := y

Memory T0.view T1.view
〈 x : 0 @ 0 〉
〈 y : 0 @ 0 〉 x @ 0

y @ 0
x @ 0
y @ 0

T0.prm T1.prm
〈 y : 1 @ 1 〉

〈 y : 1 @ 1 〉 1
〈 x : 1 @ 1 〉

11

• revisit load buffering example

• remember: want to permit observing `1` when loading memory location `x` into register `a`

• SLIDE — first thread promises to write `y := 1` at timestamp 1

• this also adds the promised write to memory

• but does NOT advance pc!

• SLIDE — second thread reads y

• possibilities include y @ 0 and y @ 1

• choose the latter in this execution

• its view of y is updated

• SLIDE — writes the newly read value back to x with timestamp 1

• technically this involves promise+fulfill

• and second thread’s view of x is also updated

• SLIDE — and it’s pc advances and second thread is finished

• SLIDE — first thread reads x

• two possibilities: @0 and @1

• we choose @1 to observe `x = 1`

• update local view of `x`

• SLIDE

• not done yet — still have to fulfill promised write

• local view of `y` is @ 0

Example (LB)
a := x
y := 1

x := y

Memory T0.view T1.view
〈 x : 0 @ 0 〉
〈 y : 0 @ 0 〉 x @ 0

y @ 0
x @ 0
y @ 0

T0.prm T1.prm
〈 y : 1 @ 1 〉

〈 y : 1 @ 1 〉 1
〈 x : 1 @ 1 〉

11
1

• revisit load buffering example

• remember: want to permit observing `1` when loading memory location `x` into register `a`

• SLIDE — first thread promises to write `y := 1` at timestamp 1

• this also adds the promised write to memory

• but does NOT advance pc!

• SLIDE — second thread reads y

• possibilities include y @ 0 and y @ 1

• choose the latter in this execution

• its view of y is updated

• SLIDE — writes the newly read value back to x with timestamp 1

• technically this involves promise+fulfill

• and second thread’s view of x is also updated

• SLIDE — and it’s pc advances and second thread is finished

• SLIDE — first thread reads x

• two possibilities: @0 and @1

• we choose @1 to observe `x = 1`

• update local view of `x`

• SLIDE

• not done yet — still have to fulfill promised write

• local view of `y` is @ 0

Example (LB)
a := x
y := 1

x := y

Memory T0.view T1.view
〈 x : 0 @ 0 〉
〈 y : 0 @ 0 〉 x @ 0

y @ 0
x @ 0
y @ 0

T0.prm T1.prm
〈 y : 1 @ 1 〉

〈 y : 1 @ 1 〉 1
〈 x : 1 @ 1 〉

11
1

• revisit load buffering example

• remember: want to permit observing `1` when loading memory location `x` into register `a`

• SLIDE — first thread promises to write `y := 1` at timestamp 1

• this also adds the promised write to memory

• but does NOT advance pc!

• SLIDE — second thread reads y

• possibilities include y @ 0 and y @ 1

• choose the latter in this execution

• its view of y is updated

• SLIDE — writes the newly read value back to x with timestamp 1

• technically this involves promise+fulfill

• and second thread’s view of x is also updated

• SLIDE — and it’s pc advances and second thread is finished

• SLIDE — first thread reads x

• two possibilities: @0 and @1

• we choose @1 to observe `x = 1`

• update local view of `x`

• SLIDE

• not done yet — still have to fulfill promised write

• local view of `y` is @ 0

Why are time stamps dense?

x := 1
x := 2

x := 3

* “dense” = infinite timestamps between t1 and t2 where t1 != t2

* SLIDE — first thread promises 〈 x : 2 @ 2 〉

* before it can fulfill that promise, it must write 〈 x : 1 @ 1 〉

* SLIDE — but what if second thread writes 〈 x : 3 @ 1 〉 before first thread writes 〈 x : 1 @ 1 〉?

* now first thread can’t write 〈 x : 1 @ 1 〉 because timestamp 1 is already taken

* but also can’t use timestamp 2 because it needs to fulfill its promise at timestamp 2

* SLIDE — choose some timestamp t where 1 < t < 2 — eg 1.5

* there ALWAYS exists such a `t` because of dense property

Why are time stamps dense?

x := 1
x := 2

x := 3

• T0 promises 〈 x : 2 @ 2 〉

* “dense” = infinite timestamps between t1 and t2 where t1 != t2

* SLIDE — first thread promises 〈 x : 2 @ 2 〉

* before it can fulfill that promise, it must write 〈 x : 1 @ 1 〉

* SLIDE — but what if second thread writes 〈 x : 3 @ 1 〉 before first thread writes 〈 x : 1 @ 1 〉?

* now first thread can’t write 〈 x : 1 @ 1 〉 because timestamp 1 is already taken

* but also can’t use timestamp 2 because it needs to fulfill its promise at timestamp 2

* SLIDE — choose some timestamp t where 1 < t < 2 — eg 1.5

* there ALWAYS exists such a `t` because of dense property

Why are time stamps dense?

x := 1
x := 2

x := 3

• T0 promises 〈 x : 2 @ 2 〉

• T1 writes 〈 x : 3 @ 1 〉

* “dense” = infinite timestamps between t1 and t2 where t1 != t2

* SLIDE — first thread promises 〈 x : 2 @ 2 〉

* before it can fulfill that promise, it must write 〈 x : 1 @ 1 〉

* SLIDE — but what if second thread writes 〈 x : 3 @ 1 〉 before first thread writes 〈 x : 1 @ 1 〉?

* now first thread can’t write 〈 x : 1 @ 1 〉 because timestamp 1 is already taken

* but also can’t use timestamp 2 because it needs to fulfill its promise at timestamp 2

* SLIDE — choose some timestamp t where 1 < t < 2 — eg 1.5

* there ALWAYS exists such a `t` because of dense property

Why are time stamps dense?

x := 1
x := 2

x := 3

• T0 promises 〈 x : 2 @ 2 〉

• T1 writes 〈 x : 3 @ 1 〉

• T0 writes 〈 x : 1 @ t 〉 where 1 < t < 2

* “dense” = infinite timestamps between t1 and t2 where t1 != t2

* SLIDE — first thread promises 〈 x : 2 @ 2 〉

* before it can fulfill that promise, it must write 〈 x : 1 @ 1 〉

* SLIDE — but what if second thread writes 〈 x : 3 @ 1 〉 before first thread writes 〈 x : 1 @ 1 〉?

* now first thread can’t write 〈 x : 1 @ 1 〉 because timestamp 1 is already taken

* but also can’t use timestamp 2 because it needs to fulfill its promise at timestamp 2

* SLIDE — choose some timestamp t where 1 < t < 2 — eg 1.5

* there ALWAYS exists such a `t` because of dense property

Wait — There’s More!

• Atomics and fences

• Mechanized proofs

• DRF guarantees

• Compilation to TSO
and Power

* more good stuff in paper, we don’t have time

* extend the model with semantics for release/acquire and SC atomics and fences

* machine checked proofs of correctness implemented in Coq

* this is an area where we *know* we need formal proofs and we need them checked correct

* details on how data-race free programs (using correct locks/atomics/synchronization) are unaffected

* talk about how they’ve compiled these semantics into x86 TSO and Power

* they left ARM for future work, and intend to do that soon

Is Promising Perfect?

• No thread inlining

• Limited code motion

* disclaimer: I’m not really qualified to critique this model and discuss its limitations

* thread inlining is where one thread executes all of another thread’s work

* this can make promises unfulfillable

* maybe has implications for work stealing? honestly not sure

* the per-location SC makes optimizations like LICM difficult (maybe impossible?)

* SLIDE

Is Promising Perfect?

• No thread inlining

• Limited code motion

• … No, but it sure is promising!

* disclaimer: I’m not really qualified to critique this model and discuss its limitations

* thread inlining is where one thread executes all of another thread’s work

* this can make promises unfulfillable

* maybe has implications for work stealing? honestly not sure

* the per-location SC makes optimizations like LICM difficult (maybe impossible?)

* SLIDE

THANK YOU!!
@pwlpdx

@fitzgen

